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Abstract
Background: A key step in the regulation of gene expression is the sequence-specific binding of
transcription factors (TFs) to their DNA recognition sites. However, elucidating TF binding site
(TFBS) motifs in higher eukaryotes has been challenging, even when employing cross-species
sequence conservation. We hypothesized that for human and mouse, many orthologous genes
expressed in a similarly tissue-specific manner in both human and mouse gene expression data, are
likely to be co-regulated by orthologous TFs that bind to DNA sequence motifs present within
noncoding sequence conserved between these genomes.

Results: We performed automated motif searching and merging across four different motif finding
algorithms, followed by filtering of the resulting motifs for those that contain blocks of information
content. Applying this motif finding strategy to conserved noncoding regions surrounding co-
expressed tissue-specific human genes allowed us to discover both previously known, and many
novel candidate, regulatory DNA motifs in all 18 tissue-specific expression clusters that we
examined. For previously known TFBS motifs, we observed that if a TF was expressed in the
specified tissue of interest, then in most cases we identified a motif that matched its TRANSFAC
motif; conversely, of all those discovered motifs that matched TRANSFAC motifs, most of the
corresponding TF transcripts were expressed in the tissue(s) corresponding to the expression
cluster for which the motif was found.

Conclusion: Our results indicate that the integration of the results from multiple motif finding
tools identifies and ranks highly more known and novel motifs than does the use of just one of these
tools. In addition, we believe that our simultaneous enrichment strategies helped to identify likely
human cis regulatory elements. A number of the discovered motifs may correspond to novel
binding site motifs for as yet uncharacterized tissue-specific TFs. We expect this strategy to be
useful for identifying motifs in other metazoan genomes.

Background
A key step in the regulation of gene expression is the
sequence-specific binding of TFs to their DNA recognition

sites. Since transcription factor binding sites (TFBSs) are
usually short (~5–15 basepairs (bp)) and a typical
sequence-specific TF binds to sites that are similar to each
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other, a number of computational approaches have been
developed to attempt to identify these sequences in silico
[1]. We shall refer to a given sequence that a TF binds to as
a 'word', and a collection of words that a given TF binds as
a 'motif'. Various computational motif finders have been
developed to search among an input set of sequences in
order to identify over-represented DNA motifs and have
been based upon a range of algorithmic approaches, such
as Gibbs sampling [2], expectation maximization [3,4],
and word enumeration [5-9].

At its core, motif finding is essentially a signal-to-noise
problem. It has been estimated that in humans about 3%
of intergenic regions are regulatory elements, whereas
about 15% of intergenic regions are regulatory elements
in the yeast Saccharomyces cerevisiae [10]. Motif finding in
metazoans has also been significantly more challenging
than in prokaryotes or yeast because TFBSs in metazoan
genomes can be found far away from the promoter
regions [1], and because the noncoding regions are typi-
cally extremely lengthy.

Additional filters have been applied to mammalian input
sequences in attempts to further increase the over-repre-
sentation of particular motifs within a given input set of
sequences. Examination of physically enriched genomic
regions, such as from microarray-based readout of chro-
matin immunoprecipitation (ChIP-chip, or in vivo
genome-wide location analysis) allows the identification
of regions of a genome that are bound in vivo by a partic-
ular TF, and thus also allows the identification of TFBS
motifs [11,12], although these experiments have several
limitations [13]. Of note, phylogenetic footprinting has
been successful in enriching for TFBS motif matches in
mammalian noncoding regions known to contain TFBSs,
surrounding similarly expressed genes [1,14,15].

In addition to searching for motif matches within con-
served sequence, one can perform a de novo motif search
within conserved sequence [16] or for conserved motifs
[17,18]. For example, Xie et al. examined promoter
regions and 3' UTRs in the human, mouse, rat, and dog
genomes for over-represented, conserved motifs [18]. For
known regulatory motifs, they filtered TRANSFAC [19]
motifs to identify those with a high motif conservation
score, over the four mammalian genomes examined, rela-
tive to comparable random motifs. In order to identify
novel motifs, they exhaustively enumerated all motifs 6–
18 bp in length, and filtered for those with high motif
conservation scores. A key issue in considering this
approach is that the use of the motif conservation score
relies upon the assumption that the position of a motif
occurrence has been highly conserved in mammalian
genomes. However, TFBSs may shuffle through evolution,
such that their positions in aligned sequence are not con-

served, despite the motif occurrence remaining functional
[20]. Indeed, it is unclear how one should score for motif
conservation to account for this phenomenon.

Here, we hypothesized that many orthologous genes
expressed in a similarly tissue-specific manner in human
and mouse, are likely to be co-regulated by orthologous
TFs through similar cis regulatory regions. Therefore, we
chose to perform de novo motif searches within human
promoter regions that are conserved with the mouse
genome and that are upstream of genes whose mouse
orthologs exhibit tissue-specific gene expression that is
highly correlated to that of their human counterparts.

In order to automate the motif searches, we developed a
software package, termed MultiFinder (shown schemati-
cally in Figure 1), that performs automated motif search-
ing using four different profile-based motif finders,
including AlignACE [21,22], MDscan [23], BioProspector
[24] and MEME [4]. We anticipated that using all four of
these motif finders might allow the user to combine the
strengths of their different algorithms. This approach has
been suggested in the context of methods for aligning
noncoding sequences [25], as well as in the context of
gene-finding programs [26]. Since the scoring functions
from these motif finders are not directly comparable, Mul-
tiFinder allows the user to select any combination of the
four motif finders and any combination of five scoring
functions. Another motif analysis suite, Toucan [27], uti-
lizes MotifSampler, a Gibbs sampling strategy, to search
for motifs within conserved noncoding sequence [27],
whereas MultiFinder uses a combination of motif finding
programs. Another recently developed integrated system,
termed RgS-Miner [28], selects motifs by the over-repre-
sentation of motif pairs [28], whereas MultiFinder scores
individual discovered motifs by a user-specified scoring
function.

As input for MultiFinder, we used conserved regions from
the alignment of the human and mouse genomes as avail-
able from the UCSC Bioinformatics website [29,30]. After
motif searching, the results from each motif finder are
merged and the motifs are ranked according to the user-
specified scoring function. In an attempt to further enrich
for mammalian regulatory motifs, we also applied a filter
aimed at eliminating motifs that might score well by the
various common motif-scoring metrics, but whose infor-
mation content distribution does not resemble that of
typical TFBS motifs.

We have applied MultiFinder successfully to yeast ChIP-
chip data [11] and to a set of mammalian genes expressed
in skeletal muscle [15]. MultiFinder has also been applied
to conserved sequence from the alignment of Drosophila
melanogaster and Drosophila pseudoobscura (data not
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shown). Applying MultiFinder to conserved noncoding
regions surrounding co-expressed tissue-specific human
and mouse genes [31,32] allowed us to discover both pre-
viously known and many novel candidate regulatory DNA
motifs in all 18 tissue-specific expression clusters that we
examined.

Results and Discussion
Motif finding within Saccharomyces cerevisiae 
sequences
We used yeast ChIP-chip data [11] as our validation data
sets for evaluating MultiFinder. Specifically, we selected
10 data sets that span a range of enrichment scores in the
ChIP-chip data [11] and that cover 5 gapped and 5
ungapped TFBS motifs. In order to determine the statisti-
cal significance of the motifs found by MultiFinder, 10
size-matched randomly selected sequence sets (which we
shall refer to as "matched randoms") were generated for

Schematic of MultiFinder designFigure 1
Schematic of MultiFinder design. The sequence and support files are input files (aqua boxes) required by the sequence extrac-
tion script SequenceExtractor.pl to generate a number of input files (gray boxes) required by the motif finders gray MDscan, 
BioProspector, MEME, and AlignACE (green boxes). Statistics are generated for the motifs, similar motifs are merged and 
TRANSFAC IDs are assigned (tan boxes). Motifs from the previous step are combined and similar motifs are merged (purple 
box). Graphical output of the combined results (purple box) from all four motif finders is generated for each scoring function 
(red box).
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each of the 10 TFs and submitted to MultiFinder (see
Methods). In 8 out of 10 cases (Reb1, Swi4, Yap1, Gcn4,
Abf1, Rap1, Mcm1 and HSF1) MultiFinder identified the
correct binding site motif, with all four motif finders iden-
tifying the correct motif as the motif with the best group
specificity score [21] [see Additional Figure 1]. Despite the
different motif finders' different approaches for internal
representation of gaps (see Methods), there was essen-
tially no difference between the motifs found by the four
motif finders, although AlignACE tended to generate
motifs with much better group specificity scores than did
the other motif finders. Both of the TFs for which the cor-
rect motif was not identified (Pho4 and Gal4) were from
sets with low enrichment scores [11]. In addition, the
Gal4 motif is a particularly challenging motif for motif
finders because of the 11 bp gap separating its 2 relatively
short blocks of contiguous nucleotide preference. We note
that it is unlikely that other types of sequence data sets,
such as those from gene expression clusters, will be as
highly enriched for any given TFBS motif. Determining
the performance differences between the four motif find-
ers would require a data set of intermediate difficulty;
however, we chose not to focus on performing a thorough
comparison of these and other possible motif finders
[33], but rather on integrating the four commonly used
and readily available motif finders, along with additional
enrichment filters (discussed below), for use in identify-
ing candidate mammalian regulatory motifs.

Compensating for background word frequency variation 
within various classes of human noncoding regions
CpG islands, which are associated with increased expres-
sion of the downstream gene, are found in the promoters
of approximately 50% of mammalian genes [34]. As an
illustration of the significance of this effect, we quantified
the over- or under-representation of specific hexamers in
each of 9 different classes of genomic regions: 0–1000 bp,
0–2000 bp and 0–5000 bp sequence windows in the
immediately upstream, downstream, and intronic regions
of genes (see Figure 2). Although the rankings of the word
frequencies are similar among these windows [see Addi-
tional Table 1a], the relative over-representation ratios are

different; this becomes more apparent when non-overlap-
ping sequence windows are considered [see Additional
Table 1b]. (We note that, interestingly, we found that the
sequence windows from the first introns were enriched for
GC-rich hexamers as compared to genome-wide noncod-
ing sequence.) In order to account for the variable GC
content of different region locations relative to transcrip-
tion start, MultiFinder uses a background model gener-
ated specifically from the same genomic sequence
window that was used for the motif search.

Mammalian skeletal muscle cis regulatory modules 
(CRMs)
As a validation sequence set for MultiFinder analysis of
mammalian sequence, we examined the skeletal muscle
regulatory TFs Myf, Mef2, SRF, Tef1, and Sp1, and a set of
experimentally verified CRMs previously collected from
the literature by Wasserman et al. [15]. Previous phyloge-
netic footprinting studies demonstrated that these TFs are
enriched in the evolutionarily conserved regions
upstream of orthologous human and mouse skeletal mus-
cle genes [14]. For these five TFs, there were more position
weight matrix (PWM) matches for these five TFs [14,35]
within the CRM sequence that is conserved between the
human and mouse genomes, than there are experimen-
tally verified binding sites (see Table 1).

In order to determine the statistical significance of the
motifs found by MultiFinder, we compared them against
motifs found in five sets of matched randoms. The rank-
ings and group specificity scores of the motifs identified
by the four different motif finders (see Methods) are
shown in Table 2. MEME was the only motif finder that
identified all five of the known motifs within the skeletal
muscle CRMs. Although BioProspector and MDscan iden-
tified relatively few of the known motifs, they ranked the
identified known motifs highest among all discovered
motifs. Notably, MDscan found 372 motifs that were
merged (see Methods) into four motif clusters and Bio-
Prospector found 361 motifs that were all matches to the
Sp1 motif, whereas AlignACE found 365 motifs that were
merged into 40 distinct motifs and MEME found 388

Types of genomic sequence windows examined for mammalian sequencesFigure 2
Types of genomic sequence windows examined for mammalian sequences. Three different lengths of noncoding sequence 
upstream, within the first introns, and downstream of genes were used to examine hexameric word frequencies.
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motifs that were merged into 117 distinct motifs. Thus,
BioProspector and MDscan might be further aided by
incorporation of a similarity metric that would eliminate
very similar motifs, so that additional nonredundant
motifs might be identified within the 30 and 50 motif
limits imposed by MDscan and BioProspector, respec-
tively. We suggest that when considering which motif
finder(s) to use, it is important to consider how many dif-
ferent motifs are expected to be present in the data set.

Filtering motifs by blocks of information content
Certain motif finders usually will find not only motifs that
resemble TFBS motifs, but also numerous sequence motifs
that contain individual positions of high information

content interspersed with positions of low information
content [see Additional Figure 2]. However, because DNA
binding proteins generally interact with a number of adja-
cent bases of a DNA binding site [36-38], TFBS motifs are
expected to contain blocks consecutive nucleotide posi-
tions with very strong base preference. This observation
has been noted previously, and has been utilized in devel-
oping a new motif finding method that has been success-
fully applied towards identifying DNA motifs in
Escherichia coli and S. cerevisiae promoters [39]. Therefore,
we applied a simple filtering scheme, termed "block filter-
ing", which removes motifs resulting from MultiFinder
that failed our criteria for having blocks of information
content (see Methods).

Table 1: Comparison of different regions of sequence conservation in the muscle related genes. (A) Number of experimentally verified 
TFBSs found in the conserved regions of different sizes. The Wasserman conserved regions were taken from Wasserman et al. [15]; 
note that the regions were identified using a Bayesian alignment method between human and mouse, while the upstream regions that 
we call conserved are from the UCSC Bioinformatics Site [29,30]. The 1, 2, 5 kb conserved regions were generated using the blastz 
alignment of the human (hg16) and mouse (mm4) taken from the UCSC Bioinformatics Site. The name of each TF family is listed next 
to the number of known sites taken from Wasserman et al. [14]. The number of sites found within the CRMs is listed next. The 
number of sites found in the sequences generated by SequenceExtractor is listed according to the length of the region. (B) Number of 
sites matching the corresponding TFBS motif, at a Pearson correlation coefficient threshold of 0.6, within each of the regions shown in 
(A). (C) Relative enrichment of each TFBS motif in the specified regions, normalized to the CRMS. Specifically, the enrichment is 
calculated by dividing the frequency of the motif in the region of interest by its frequency in the CRMs.

(A) Experimentally verified transcription factor binding sites.

TF Known Sites Wasserman 
Conserved Sites

1 kb Upstream 
Conserved Sites

2 kb Upstream 
Conserved Sites

5 kb Upstream 
Conserved Sites

Mef2 21 16 11 11 11
Myf 24 18 14 14 14
Sp1 24 19 16 16 16
SRF 16 12 10 10 10
Tef 9 9 6 6 6

(B) Sites matching PWM.

TF Wasserman 
Conserved Sites

1 kb Upstream 
Conserved Sites

2 kb Upstream 
Conserved Sites

5 kb Upstream 
Conserved Sites

Mef2 25 13 15 17
Myf 78 36 44 91
Sp1 79 43 54 90
SRF 31 22 22 32
Tef 10 7 8 13

(C) Relative enrichment of PWM matches in sequence windows.

TF Wasserman 
Conserved Sites

1 kb Upstream 
Conserved Sites

2 kb Upstream 
Conserved Sites

5 kb Upstream 
Conserved Sites

Mef2 1.00 1.16 1.00 0.57
Myf 1.00 1.03 0.94 0.97
Sp1 1.00 1.21 1.14 0.95
SRF 1.00 1.59 1.19 0.86
Tef 1.00 1.56 1.34 1.08
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In order to evaluate the utility of this filtering strategy, we
applied block filtering to the motifs discovered within the
mammalian skeletal muscle CRM validation data set. All
five of the positive control motifs, Mef2, Myf, Sp1, SRF
and Tef, when initially discovered, were retained after
block filtering (see Table 2). Importantly, the rankings of
many of these five motifs that were discovered by Alig-
nACE and MEME improved after block filtering, and none
were eliminated by the filter. In considering all of the dis-
covered motifs (not just the five positive control motifs),
block filtering tended to eliminate motifs identified by
AlignACE and MEME, suggesting that either these pro-
grams or the input parameters that we used for them
tended to identify motifs that do not resemble most
known vertebrate TFBS motifs.

In general, block filtering tended to eliminate the more
group specific motifs generated from the matched ran-
doms, and to retain the more group specific motifs found
in the skeletal muscle CRMs, including known myogenic
TFBS motifs (see Figure 3A,B). However, we were some-
what surprised that once we considered five separate sets
of matched randoms, the number of highly group specific
motifs resulting from the matched randoms far exceeded
the number of comparably scoring motifs resulting from
the skeletal muscle CRMs (see Figure 3C,D). This is in
stark contrast to previous observations from similarly
designed motif finding analyses in S. cerevisiae, where, for
motifs exceeding a given MAP score threshold, signifi-
cantly fewer motifs resulting from random sets of genes
were as highly group specific as those resulting from func-
tional categories of genes [21]. Upon inspecting the

Table 2: Performance of AlignACE, BioProspector, MDscan and MEME on mammalian skeletal muscle CRMs. Results are shown for 
the five TFs, Mef2, Myf, Sp1, SRF and Tef, with experimentally verified binding sites within these CRMs. A correlation coefficient cutoff 
of 0.6 was used in the merging of highly similar discovered motifs (see Methods). (A) Results before block filtering. The number in 
parentheses next to the rank of the motif indicates the number of times the motif was found in five MultiFinder runs on this CRM 
sequence set, and the corresponding group specificity scores and ranks are for the highest ranking motif, from the five runs, matching 
the previously described motifs [35] for these TFs. (B) Results following the removal of motifs that failed our block filtering step. The 
numbers in parentheses next to the column header "Rank" are the range of number of motifs found by that motif finder following 
motif merging from the five runs. The ranking of the motif based on group specificity and the group specificity score are reported for 
each motif. In both Tables 2A and 2B, below the results for each of these five TFs, the geometric mean and range of group specificity 
scores from the five size-matched randomly selected sequence sets (see Methods) are listed for each motif finder for comparison.

(A) Without Block Filtering

AlignACE BioProspector MDscan MEME
Rank Group Rank Group Rank Group Rank Group

Mef2 1(4) 2.40 × 10-16 - - 1(5) 5.00 × 10-8 4(5) 6.90 × 10-12

Myf 3(5) 4.10 × 10-8 - - 3(5) 5.40 × 10-2 24(5) 1.40 × 10-4

Sp1 4(2) 3.80 × 10-8 1(4) 1.10 × 10-8 2(5) 1.70 × 10-3 6(5) 3.60 × 10-11

SRF 3(4) 4.10 × 10-8 - - - - 29(5) 7.20 × 10-4

Tef - - - - - - 63(5) 2.20 × 10-2

Mean 4.52 × 10-3 2.40 × 10-7 8.59 × 10-5 1.02 × 10-3

Range 6.90 × 10-1 7.20 × 10-8 1.40 × 10-1 2.50 × 10-24 2.80 × 10-1 1.40 × 10-9 3.20 × 10-1 1.00 × 10-29

(B) After Block Filtering

AlignACE BioProspector MDscan MEME

Rank (26–38) Group Rank (1) Group Rank (4) Group Rank (112) Group

Mef2 1 2.40 × 10-16 - - 1 5.00 × 10-8 4 6.90 × 10-12

Myf 3 4.10 × 10-8 - - 3 5.40 × 10-2 24 1.40 × 10-4

Sp1 4 3.80 × 10-8 1 1.10 × 10-8 2 1.70 × 10-3 6 3.60 × 10-11

SRF 2 4.10 × 10-8 - - - - 29 7.20 × 10-4

Tef - - - - - - 49 2.20 × 10-2

Mean 3.32 × 10-3 6.48 × 10-8 8.59 × 10-5 9.30 × 10-4

Range 6.90 × 10-1 6.50 × 10-7 1.00 × 10-1 2.50 × 10-24 2.80 × 10-1 1.40 × 10-9 3.70 × 10-1 1.00 × 10-29
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motifs from the matched randoms, we noticed that some
of the highly group specific motifs appeared to be partially
repetitive or long motifs of rather low information con-
tent sequences, suggesting that our block filtering criteria
perhaps should be more stringent. We also noticed that
some of the highly group specific motifs from the
matched randoms had similarity to TRANSFAC motifs
such as ETS and FOX, suggesting that non-protein-coding
sequence conserved between the human and mouse
genomes contains sequences that resemble core motifs for
some TF families and that are frequent enough in pro-
moter regions that the motif finders will discover them
along with enough over-represented flanking sequences

by chance to generate highly group specific, overfitted
motifs. Overall, this analysis indicates that our compari-
son of group specificity scores for motifs resulting from an
input tissue-specific query set versus motifs resulting from
five separate sets of matched randoms is likely a conserv-
ative threshold for assigning statistical significance.

Effect of input mammalian sequence length on motif 
discovery
In order to explore the effect of increasing sequence length
on motif discovery (and thus presumably an increased
amount of background sequence associated with the
experimentally verified TFBSs (see Table 1c)), for each of

Effect of block filtering of motifs resulting from the skeletal muscle CRMs versus randomly selected sequence setsFigure 3
Effect of block filtering of motifs resulting from the skeletal muscle CRMs versus randomly selected sequence sets. Shown here 
are the nonredundant motifs from five separate MultiFinder runs for both the muscle test set and the matched randoms. (A) 
Total number of motifs, belonging to either the skeletal muscle CRM set or the size-matched set of random sequences, that 
either passed or failed the blocks filtering step (y-axis), at different motif group specificity cutoffs (x-axis). (B) Percentage of 
motifs, at different group specificity scores cutoffs (x-axis), that passed the block filtering step (y-axis). (C) As in (A), except 
after merging motif results from 5 runs of the skeletal muscle CRM set and separately runs on 5 separate size-matched sets of 
random sequences. (D) As in (B), except after merging motif results from 5 runs of the skeletal muscle CRM set and sepa-
rately runs on 5 separate size-matched sets of random sequences.
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the skeletal muscle genes for which we had examined
CRMs (Table 2), we used as input to MultiFinder the
RepeatMasked sequence conserved between the human
and mouse genomes within 1 kb, 2 kb, or 5 kb upstream
of their transcriptional start sites. With only a few excep-
tions, increasing the amount of input sequence resulted in
a less significant group specificity score and thus
decreased the rank of the discovered motif (see Figure 4A–
D); as expected, the relative enrichment of motif matches
in these regions (Table 1) was strongly correlated (r =
0.73) with motif rank. Some motifs had stronger base
preference, even if not necessarily ranking higher, given a
greater amount of upstream input sequence. These results
also indicate that even within 5 kb upstream regions, bio-
logically significant TFBS motifs can be found, but that
these motifs will not necessarily rank particularly highly
when ranked according to group specificity score. There
are a number of possible reasons for this result: there may
be numerous as yet uncharacterized regulatory motifs that
rank more highly, group specificity may not be a suitable
metric for motif discovery in mammalian genomes, indi-
cating that transcriptional regulation requires the combi-
natorial action of multiple TFs, or the motif finders may
still require significant algorithmic improvement to dis-
cover TFBS motifs. Since we were interested in discovering
TFBS motifs from mammalian tissue-specific gene expres-
sion data, we decided to limit ourselves to the 1 kb
upstream regions in subsequent motif discovery, since
those regions in general resulted in TFBS motifs being
ranked most highly.

Identification of DNA motifs within mammalian tissue-
specific expression clusters
The GNF SymAtlas generated by the Genomics Institute of
the Novartis Research Foundation catalogs gene expres-
sion profiles from 79 human and 61 mouse tissues [32].
We clustered these data to identify groups of human genes
with correlated tissue expression profiles and whose
mouse orthologs also displayed similar expression pat-
terns (see Methods). For motif finding, we limited our-
selves to those gene expression clusters that were of
biological interest to us, and for which up-regulation
appeared to be quite specific for either one or a relatively
small set of related tissues. The average expression profiles
for each of the 18 selected human tissue-specific gene
expression clusters that we examined with MultiFinder are
shown in Figure 5. Heat maps for a subset of the 18
selected gene expression clusters that we refer to below are
shown in Figure 6; all 18 selected gene expression clusters
are shown in Additional Figure 3.

For each of the genes in a given cluster, we searched for
motifs in the conserved noncoding sequence within 1 kb
upstream of transcriptional start. Since we were interested
in identifying tissue-specific motifs, we assessed the statis-

tical significance of the motifs found by MultiFinder anal-
ysis of the gene expression clusters by comparing a given
motif's group specificity score [21] versus the geometric
mean of the scores of all the motifs passing the block filter
that resulted from analysis of five sets of matched ran-
doms. A sample output file from a MultiFinder search of
the skeletal muscle expression cluster is shown in Figure 7.

In examining the MultiFinder output, we first identified
all those discovered motifs that were matches to known
TFBS motifs listed in the TRANSFAC [19] Professional
database (see Methods). Next, we explored whether any
discovered motifs that are matches to TRANSFAC motifs
correspond to TFs that are expressed in the given expres-
sion cluster. Here we called a TF "expressed" if its tran-
script's average difference (AD) value in the specified
tissue was at least 200 [31] in any one of the tissues that
defined the tissue specificity of the given expression clus-
ter. For example, in examining the heart-specific expres-
sion cluster, we determined whether each TRANSFAC
motif's TF was expressed in the heart mRNA samples; sim-
ilarly, even if a given TF was expressed only in the cerebel-
lum, we nevertheless called it "expressed" in the
"neuronal" expression cluster. Note that it is not necessary
for a TF's transcript to be present in the same RNA sample
as the genes whose expression that TF regulates. For exam-
ple, the TF may be expressed at very low transcript levels,
or the protein may have a significantly longer half-life
than does its mRNA transcript. Furthermore, it is not nec-
essary that if a TF's transcript is present, that the active TF
is actually present, with any necessary post-translational
modifications, and nuclear, at the same time as its RNA is
expressed. Nevertheless, we were curious to see how fre-
quently we would actually observe that a TF is expressed
in the same RNA samples as the genes that it may be reg-
ulating through the identified TFBS motif match within 1
kb of those genes' upstream sequence. In this study we
focused on activators and thus gene expression clusters
that exhibited tissue-specific up-regulation. A similar
study could be performed focusing on repressors and clus-
ters of down-regulated genes.

The threshold that we imposed for considering a discov-
ered motif for potential biological significance was a
group specificity score below the geometric mean of the
block-filtered motifs from the matched randoms. The
results of our MultiFinder analysis of the skeletal muscle
CRM set, a skeletal muscle expression cluster not filtered
according to expression of the mouse orthologs, and each
of the 18 expression clusters are shown in Figures 8 and 9.
On average, a given motif cluster mapped to 15 TRANS-
FAC motifs. There are at least three reasons for such a
higher number of multiple mappings. First, even though
we made attempts to extract only nonredundant TRANS-
FAC motifs based upon TRANSFAC's motif naming
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Effect of increasing surrounding sequence length on identification of the five known skeletal muscle TFBSsFigure 4
Effect of increasing surrounding sequence length on identification of the five known skeletal muscle TFBSs. TFBS motifs identi-
fied using: (A) the sequence conserved between the human and mouse genomes within the human CRM sequence sets previ-
ously described by Wasserman et al. [15]; (B) the sequence conserved between the human and mouse genomes within the 
first 1000 bp upstream of the same genes for which CRMs were analyzed in (A); (C) as in (B), except examining 2000 bp 
upstream of the same gene set; (D) as in (B), except examining 5000 bp upstream of the same gene set. For each of the five 
TFs, the logo of the previously described motif [35] is shown, alongside the logo of the highest ranking (according to group 
specificity) motif matching the given TF, the discovered motif's rank and its group specificity score. Five motif finding runs were 
performed for each of these four input sequence sets; if a given motif was discovered multiple times over the five runs, then 
the ranks of both the collapsed motifs and also the highest rank from the individual runs are shown, along with the geometric 
mean of the group specificity scores from individual runs in which the motif was found and the logo of the best scoring motif 
from the individual runs. Shown below each set of discovered motifs is the geometric mean and range of the group specificity 
scores of motifs discovered within five size-matched sets of randomly selected regions. All results shown here are for motifs 
that passed our block filtering criteria.
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scheme, TRANSFAC nevertheless contains numerous very
similar motifs, in some cases for the same TF, and elimi-
nation of all such redundancies would have required
manual curation of their entire motif database. Second,
TRANSFAC contains a number of motifs for highly
homologous TFs, which are expected to have highly simi-
lar DNA binding site motifs. Third, our similarity thresh-
old for clustering together similar motifs may be too loose
and thus may be clustering together motifs that in reality
should remain separate, distinct motifs.

Why does the discovery of motifs matching known
TRANSFAC motifs appear to have been most successful
for the skeletal muscle expression cluster, when consider-

ing the statistical significance of the group specificity
scores? This result does not appear to be an effect of the
size of the expression cluster, since a number of other clus-
ters contained either many fewer or many more genes (see
Figure 5). Similarly, this result does not appear to be an
effect of the tissue specificity of the cluster's expression
pattern, since other similarly sized clusters were of similar
or even more highly tissue-specific expression [see Addi-
tional Figure 3]. Furthermore, the average pairwise corre-
lation coefficient of the genes making up the skeletal
muscle expression cluster was not higher than that for
other clusters which did not exhibit highly group specific
motifs (data not shown). We offer two of many potential
explanations for this seemingly baffling finding: (1) the

Average expression profiles for each of the 18 selected human tissue-specific gene expression clusters examined with Multi-FinderFigure 5
Average expression profiles for each of the 18 selected human tissue-specific gene expression clusters examined with Multi-
Finder. Shown along the x-axis are the 34 tissue types that were profiled for both human and mouse [32]. The color bar indi-
cates fold-changes calculated in terms of the log2-transformed, normalized expression data relative to the median value over all 
genes and tissues.
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Heat maps for selected human tissue-specific gene expression clustersFigure 6
Heat maps for selected human tissue-specific gene expression clusters. (A) the pancreas-specific expression cluster, (B) the 
skeletal muscle-specific expression cluster, (C) the heart-specific expression cluster, and (D) the neuronal-specific expression 
cluster. The x-axes are as in Figure 5; shown along the y-axes are the Affymetrix accession IDs from those gene expression 
data sets. Note that the ordering of the tissues along the x-axis is the same for all the depicted clusters. The color bar here and 
in Additional Figure 1 is as in Figure 5.
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skeletal muscle tissue may have corresponded to a more
homogeneous tissue type than the other tissues that were
profiled; (2) the TRANSFAC motifs that we considered
may be biased with more of the tissue-specific motifs
being important in skeletal muscle expression.

In general, if a TF was expressed in the specified tissue of
interest, then in most cases (64.0%) we identified a motif
that matched its TRANSFAC motif, and many (97.5%) of
those motifs discovered by MultiFinder within the given
expression cluster, passed our blocks filter. It is important
to remember that the presence or absence of a TF's tran-

script, as determined by signal intensity on the expression
arrays, does not imply that the given TF was regulating its
target genes in the profiled tissue samples. For example,
an individual TF may be expressed but regulate its target
genes only in the context of co-regulatory factors [40].
Also, even though a TF is expressed, it may be neither
nuclear nor have a particular post-translational modifica-
tion required for its transcriptional activity.

Conversely, of all those discovered motifs that matched
TRANSFAC motifs, most (64.7%) of the corresponding TF
transcripts were expressed in the tissue(s) corresponding

Sample MultiFinder output for the skeletal muscle gene expression clusterFigure 7
Sample MultiFinder output for the skeletal muscle gene expression cluster. Shown are just the top twenty most group specific 
motifs from the combined results from the four individual motif finders; many more motifs were discovered than are shown. 
The columns shown are as follows: group specificity score along with the motif ranking according to group specificity; site spe-
cificity score and the motif rank according to site specificity; number of motif occurrences found in the input sequence set; 
mean and standard deviation of the number of motif occurrences in each sequence within the input set; correlation coefficient 
for the most similar TRANSFAC motif and the name of the TRANSFAC motif; the motif finders (AlignACE (AA), BioProspec-
tor (BP), MDscan (MD) and MEME (ME)) that found the motif; whether a given motif contained a tandem repeat (TR) or palin-
dromic repeat (PAL); and the sequence logo of the discovered motif.
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Known TFs' binding site motifs identified in tissue-specific gene expression clustersFigure 8
Known TFs' binding site motifs identified in tissue-specific gene expression clusters. Gene clusters are arranged in columns 
named according to the tissue type where the majority of the genes are up-regulated. The column labeled "Wasserman" corre-
sponds to the 40 validated human skeletal muscle CRMs [15]; the column labeled "Skeletal muscle – only human expr" corre-
sponds to a skeletal muscle expression cluster identified from the GNF data without considering the expression patterns of 
any homologous mouse genes (however, RepeatMasked, noncoding sequence conserved between human and mouse was still 
examined by MultiFinder). Each row represents a known TFBS motif obtained from the TRANSFAC Professional 7.4 database 
[69,70]. A listing of the TRANSFAC TFBS matrix accession numbers for each of the TFBS motif names shown here and all oth-
ers that we considered is provided in Additional Data File 2. The Mef2, Myf, Sp1, SRF, and Tef motifs were taken from Philippa-
kis et al. [35]. Shown for each expression cluster are the nonredundant motifs from five separate MultiFinder runs for both the 
input sequence set and the matched randoms; a correlation coefficient cutoff of 0.6 was used in the merging of highly similar 
motifs discovered by MultiFinder (see Methods). The following color scheme indicates whether a gene encoding a TF is 
expressed above the detection threshold (here, AD >= 200) and whether a motif matching that TF's BS motif was found by 
MultiFinder: black and gray boxes denote TFs whose binding site motifs we did not find, with black boxes denoting TFs that 
were not expressed above the detection threshold in the tissue cluster (AD < 200) and gray boxes denote those that were 
expressed an AD value of at least 200; yellow boxes denote TFs that were expressed below the detection threshold, but for 
which matches to the corresponding DNA binding site motifs were found by MultiFinder and passed the block filter; green 
boxes denote TFs that were expressed below the detection threshold, but for which matches to their binding site motifs were 
found by MultiFinder and failed the block filter; orange boxes denote TFs that were expressed above the detection threshold 
and were found by MultiFinder, but that failed the block filtering screen; red boxes denote TFs that were expressed above the 
detection threshold, were found by MultiFinder, and passed the block filtering screen; for the yellow, green, orange, and red 
boxes, solid colored boxes denote the discovered motifs whose group specificity scores were lower (i.e., more significant) 
than the geometric mean of the block-filtered motifs resulting from the size-matched randomly selected sets of genes, while 
the stippled boxes denote the discovered motifs whose group specificity scores were equal to or greater (i.e., less significant) 
than the geometric mean resulting from the size-matched randomly selected sets of genes. For the skeletal muscle CRMs 
("Wasserman"), the size-matched randoms were chosen such that they were also matched to come from the same genomic 
regions upstream of transcriptional Start as were the Wasserman CRMs; in other words, the randoms for the 1 kb upstream 
Wassermansequences are all within 1 kb of the transcriptional start site. Similarly, since the examined Wasserman sequences 
were conserved and RepeatMasked, so too were the corresponding size-matched randoms.
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Statistical significance of known TFs' binding site motifs identified in tissue-specific gene expression clustersFigure 9
Statistical significance of known TFs' binding site motifs identified in tissue-specific gene expression clusters. Clusters are 
depicted as in Figure 8. Shown here is a gradient color scheme, for those motifs that both were found and also passed our 
block filtering criterion, indicating the significance of the motif matches in terms of standard deviations (SDs) of the log of the 
group specificity score for that motif match for the given input set of genes, as compared to the mean of the log of the group 
specificity scores for the size-matched randoms, as indicated in the color bar. Black boxes denote motif matches that were not 
found, dark gray boxes denote motif matches that were found but that failed block filtering, and light gray boxes denote motif 
matches that were found and passed block filtering, but whose group specificity scores were not more significant than the geo-
metric mean of the size-matched randoms.
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to the expression cluster for which the motif was found.
There are a number of possible reasons why more of the
corresponding transcripts were not identified as
expressed. First, many TFs are known to be expressed at
relatively low transcript levels and may not have AD val-
ues >200. Second, a TF may not be regulated at the tran-
scriptional level, but rather may have a long half-life and
in addition may be regulated post-translationally. Third,
an important caveat in interpreting these results is that
there may be more than one TF that is capable of binding
the discovered sequence motif. Indeed, a number of the
TRANSFAC motifs are not TFBS motifs for one specific TF,
but rather for a class of TFs, such as ETS or FOX; for exam-
ple, the FOX matrix, is composed of binding sites for 15
different FOX family members. Moreover, the differences
between a motif discovered by MultiFinder and the
TRANSFAC motif for the same TF may be significant
enough to prevent identification. Here, we used a reduced
set of motifs generated from TRANSFAC Professional ver-
sion 7.4 (see Methods). Interestingly, of the discovered
motifs that matched TRANSFAC motifs and whose corre-
sponding TFs were expressed, many (49.2%) had a group
specificity score more significant (i.e., lower) than that for
the size-matched randoms, with some motifs scoring mul-
tiple standard deviations better. This suggests that many
of the motifs discovered by MultiFinder are not only sta-
tistically significant, but may also be biologically impor-
tant. Finally, for about one-third (36.0%) of those TFs that
were expressed, we did not discover their binding site
motifs within that given expression cluster. These might
correspond to false negatives of MultiFinder. Alterna-
tively, these motifs might be found beyond the 1 kb
upstream regions that we examined in this study, or these
TFs might not contribute towards the tissue-specific gene
expression patterns of these clusters, despite their being
expressed in those clusters. We note that almost all of
those motifs for which the corresponding TF was
expressed, passed our block filter (97.5%).

This analysis of motifs matching known TRANSFAC
motifs resulted in a number of interesting findings, which
suggest that our overall strategy for discovering sequence
motifs in mammalian gene expression data is promising.
For example, the homeodomain TF NKX2.2 is expressed
in the ventral central nervous system and is known to reg-
ulate the differentiation of oligodendrocytes in spinal
cord [41]. Within the pancreas, NKX2.2 is required for the
differentiation of pancreatic beta cells, and thus has been
implicated in diabetes [42]. Only in the neuronal gene
expression cluster was NKX2.2 expressed, and was a motif
discovered that matched the NKX2.2 TRANSFAC motif. A
motif matching the NKX2.2 motif was also discovered in
pancreas, although in pancreas the NKX2.2 transcript was
present at an AD value below 200.

It is important to note that motif matches do not necessar-
ily indicate direct regulation by the indicated TF, but
rather simply indicate sequence matches beyond the sim-
ilarity threshold. For example, the NKX2.2 motif was also
discovered in the skeletal muscle, adipocyte, and immune
gene expression clusters, although in these tissues NKX2.2
was present at an AD value below 200. Given that muscle
and adipose tissue have previously been shown to be
involved in glucose homeostasis [43,44], we were curious
whether NKX2.2 might have an as yet undescribed role in
these tissues in regulating genes involved in glucose
homeostasis. However, these expression clusters did not
have an over-representation of Gene Ontology [45] anno-
tation terms pertaining to glucose homeostasis. Therefore,
some other TF that binds a motif similar to the NKX2.2
motif might actually regulate genes in these expression
clusters. Indeed, a Pfam search indicates that there are 277
homeobox proteins in the human genome (data not
shown). It is quite possible that TFs of the same structural
class and with a high degree of sequence similarity in their
DNA binding domains might potentially have similar
DNA binding site specificities.

The TF peroxisome proliferator-activated receptor gamma
(PPARgamma) provides another interesting example.
PPARgamma is a nuclear hormone receptor that het-
erodimerizes with retinoid X receptor (RXR) alpha. PPAR-
gamma is expressed predominantly in adipose tissue, and
also in the lower intestine and in cells involved in immu-
nity. It is of particular biomedical interest because it is
thought to help maintain proper levels of key glucoregu-
latory and lipogenic molecules, and has been implicated
both in diabetes and obesity [46]. Indeed, adipose-spe-
cific deletion of PPARgamma in mice causes insulin resist-
ance in fat and liver [47]. PPARgamma has also been
shown to directly activate genes in the pancreas and liver
that are important for glucose-sensing [48]. Interestingly,
expression of PPARgamma in skeletal muscle has been
shown to be important for maintenance of insulin action
in skeletal muscle in mice [49]. Dominant-negative muta-
tions in human PPARgamma are associated with severe
insulin resistance, diabetes mellitus, and hypertension
[50]. Interestingly in all tissues where PPARgamma is
expressed, the RXRalpha gene is also expressed (the con-
verse is not true; RXR is expressed in most of the tissues in
the GNF data set, and it is known that it serves as a het-
erodimerization partner for many nuclear receptors [51]).

The TRANSFAC motif for PPARgamma is actually the
motif for the PPARgamma/RXRalpha heterodimer, which
is a highly information-rich motif containing 12 positions
of very strong nucleotide preference, and so it is very likely
that a discovered motif matching this TRANSFAC motif is
a true motif match. Using MultiFinder, we discovered the
PPARgamma/RXRalpha binding site motif, with a group
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specificity score surpassing that of the size-matched ran-
doms, in the skeletal muscle, heart & related, kidney &
liver, liver, tongue, and immune gene expression clusters,
consistent with the known biological roles of PPAR-
gamma. We found it surprising that we did not discover
the PPARgamma motif in the adipocyte cluster, given the
importance of PPARgamma in adipose tissue [46,47]. It is
possible that the genes in the adipocyte cluster were not
actually highly enriched for genes that are regulated
directly by PPARgamma. Alternatively, in this cluster of
genes PPARgamma may bind a motif that is not a close
match to the TRANSFAC PPARgamma/RXRalpha motif.
We also discovered the PPARgamma/RXRalpha motif in
the heart, testis, pancreas, and placenta expression clus-
ters, although the group specificity scores were not signif-
icant for these clusters. Of note, the DNA binding site for
the PPARgamma/RXRalpha heterodimer is a direct repeat,
referred to as "direct repeat 1 (DR1)" [52]. Nuclear recep-
tors generally bind to DNA as either heterodimers or
homodimers; the DR1 half-site is capable of binding
many other nuclear receptors, including the thyroid hor-
mone receptor and the vitamin D receptor [51]. Thus, lack
of significant group specificity scores in these tissues may
be due to the occurrence of TFBSs for other similar nuclear
receptors, resulting in partial matches to the DR1 motifs.
Of the tissue-specific gene expression clusters in which we
found the PPARgamma/RXRalpha motif, PPARgamma
was expressed in skeletal muscle and pancreas, suggesting
that PPARgamma exerts a more significant regulatory role
in skeletal muscle and pancreas for maintaining glucose
homeostasis than has been described thus far. In addition,
the discovery of the PPARgamma/RXRalpha motif in the
testis expression cluster may provide insight into the
involvement of PPARgamma in testicular cancer [53].

In addition to identifying previously known TFBS motifs,
we also discovered a large number of novel, candidate
TFBS motifs. In total, over the 18 expression clusters that
we examined, we discovered 431 previously known TFBS
motifs and 579 novel, nonredundant motifs with group
specificity scores better than the geometric mean of their
corresponding matched randoms. Examples of some
newly discovered, candidate regulatory motifs are shown
in Figure 10; complete MultiFinder results for all the
known and novel motifs are available online at our web-
site http://the_brain.bwh.harvard.edu/software.html and
in Additional Data File 3. Interestingly, a number of the
novel motifs contained within them either a tandem
repeat or palindromic sequence, or in some cases, both of
these. We may be able to evaluate the functions of some
of these motifs in future analyses, such as by assessing
their co-occurrence with known regulatory motifs [35,54].
High-throughput genomic technologies such as one-
hybrid assays [55] may help to establish what TF(s) bind
to these candidate regulatory motifs.

Although Xie et al. discovered tissue-specific motifs, their
search strategy was to perform a search for over-repre-
sented k-mers over all ~2 kb promoters, and then to map
those k-mers back to tissue-specific expression data. They
discovered 69 previously known TFBS motifs, and 105
novel motifs. In contrast, our goal was to use tissue-spe-
cific expression data to discover motifs, and thus also to
demonstrate that an expression dataset focused on one or
a small number of related tissues could be used to identify
candidate regulatory motifs for those tissues. Neverthe-
less, on average 26% of the tissue-specific motifs that we
discovered within a given expression cluster were also
found by Xie et al., although this fraction drops to 3.2% if
we also require that the Xie et al. motifs were found by
those authors to be enriched within at least one of the
same tissue(s) that defined the tissue-specificity of our
expression clusters. Similarly, of the motifs found by Xie
et al. to be enriched within tissue(s) defining one of our
18 expression clusters, on average 42% were found by
MultiFinder and had a group specificity score better than
the geometric mean of the matched randoms. None of the
105 novel motifs discovered by Xie et al. were found
among our novel, block-filtered motifs that scored
beyond the geometric mean of the matched randoms.
Since our study was focused on identifying tissue-specific
motifs within 18 expression clusters, it is quite possible
that in effect we were searching for less common motifs,
that would have been unlikely to have been found in Xie
et al.'s genome-wide search for over-represented k-mers.

In order to assess the improvement in motif discovery
afforded by our ortholog co-expression filter, we sepa-
rately clustered all of the human GNF expression data,
rather than just those genes whose mouse orthologs dis-
played similar expression patterns. From these data, we
chose to examine an expression cluster that exhibited skel-
etal muscle-specific up-regulation [see Additional Figure
3]. Motif finding was then performed on those genes' 1 kb
upstream, RepeatMasked sequences conserved between
the human and mouse genomes, just as for all the other
expression clusters. Results from this comparison indicate
that imposing the co-expression restriction tends to result
in motifs with more group specific scores than when con-
sidering human expression data alone (see Figure 9),
although some motifs may be missed because a smaller
input gene set is used then.

Integrating results from a combination of motif prediction 
tools
The four motif finders that we used in this present study
exhibited tendencies for identifying different types of
motifs, in part because they impose a different penalties
on opening gaps within blocks of sequence preference. In
our study, AlignACE and MEME tended to find longer
motifs, while MDscan and BioProspector tended to find
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more compact motifs. Block filtering tended to eliminate
more AlignACE and BioProspector motifs. BioProspector
and MDscan also tended to find fewer distinct motifs in a
given data set. As shown in Table 2, within the skeletal
muscle CRMs AlignACE and MEME identified more
known motifs than did BioProspector and MDscan, sug-
gesting that AlignACE and MEME may be advantageous
when multiple motifs are present in an input sequence
set, while BioProspector and MDscan may be better for
making reliable predictions of the most frequently occur-
ring motif(s). BioProspector and MDscan were also faster
than AlignACE or MEME.

Conclusion
In this study, we searched within sequence conserved in
alignment of the human and mouse genomes. As more
mammalian genome sequences become available, we will
be able to further enrich for likely regulatory regions by
limiting our motif searches to those regions that are con-

served across all the mammalian genomes. As long as spe-
cies- or lineage-specific biological processes are not being
explored, we can expect this strategy in general to be help-
ful. In addition, as more gene expression profiling experi-
ments are performed and deposited in public databases, a
greater range of tissue types can be examined for shared
expression patterns across multiple species. Moreover, it
would be very useful to develop an algorithm for consid-
ering conservation of a motif occurrence, while allowing
the occurrence to be rearranged in the aligned genomic
sequences.

Recently Tompa and colleagues organized a motif finding
competition, in which the performance of 13 different
motif finders was compared using a variety of real and
synthetic sequence sets covering a range of genomes [33].
A caveat for interpreting the results of this competition is
that each motif finder was allowed to select only one 'best'
predicted motif for each input sequence set. Nevertheless,

Examples of discovered, novel human tissue-specific DNA sequence motifsFigure 10
Examples of discovered, novel human tissue-specific DNA sequence motifs. Shown are the clusters that yielded the motif; the 
number of SDs of the log of the group specificity score for that motif match for the given input set of genes as compared to the 
mean of the log of the group specificity scores for the size-matched randoms, the motif finder(s) (AlignACE (AA), BioProspec-
tor (BP), MDscan (MD) and MEME (ME)) which discovered the motif; whether a given motif contained a tandem repeat (TR) or 
palindromic repeat (PAL); and the sequence logo of the discovered motif.
Page 17 of 25
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:229 http://www.biomedcentral.com/1471-2105/7/229
a major conclusion from this comparison was that no sin-
gle motif finder consistently outperformed the others.
Moreover, the results indicate that a pairwise combination
of motif finders can result in improvement over the use of
a single motif finder, although the choice of motif finders
is important [33]. In that study, the combination of Alig-
nACE and MEME resulted in only marginal improvement;
unfortunately MDscan and BioProspector were not
included in this comparison. Our results also indicate that
the integration of the results from these four motif finding
tools identifies and ranks highly more known and novels
than does the use of just one these tools. Although it is
possible that only a subset of these four motif finders may
be sufficient to gain this improvement, or that some other
combination of multiple motif finders may be optimal, it
was not our goal to identify such an ideal combination. In
addition, we found that the incorporation of our 'block
filter' tended to eliminate motifs that in some cases scored
well in terms of group specificity, but whose information
content distribution does not resemble that of most
known TFBS motifs.

It would also be of interest to examine motifs in more
than just the 1 kb of upstream sequences for particular
gene expression clusters. Despite our various strategies for
enriching for likely similar regulatory regions, our com-
parison of motif finding in 1 kb versus 2 kb versus 5 kb of
upstream sequence for the a set of skeletal muscle genes
indicates that there is still much improvement that
remains to be made in identifying even the known TFBS
motifs with high confidence. Since TFBSs are often spa-
tially clustered into cis regulatory modules that regulate
gene expression in a temporal and tissue-specific manner
[1], analysis of both the known and novel discovered
motifs using a tool such ModuleFinder [35] may allow
not only the identification of candidate cis regulatory
modules but also the assignment of even higher confi-
dence to those novel motifs that are found to significantly
co-occur with known TFBS motifs [54]. In addition to per-
forming de novo motif searches on conserved noncoding
sequence, one can also further restrict motif searches to
known or suspected regulatory regions. For example,
searching for motifs within a set of known or predicted
CRMs [56] may be a particularly powerful way to increase
the likelihood of discovering motifs that are important for
specifying the particular gene expression pattern of inter-
est.

Methods
SequenceExtractor.pl
We obtained genome sequence alignments and annota-
tion files from the UCSC Genome Bioinformatics site
[29,30]. The genomes available from this site are generally
repeat masked with RepeatMasker [57] using the more
stringent "-s" masking flag and thus can be used without

further masking. SequenceExtractor is a Perl script that
parses a subset of the annotation files from the UCSC
Genome Bioinformatics site in order to extract sequence
from the assembled genomes. SequenceExtractor was
designed to extract the conserved human sequence from
the alignments of human and mouse genome, but can
also be used with other genome alignments, including
multiple alignments.

As input for extracting user-defined regions of the
genome, SequenceExtractor requires the user's input set of
RefSeq accession numbers to be used in motif searching,
the RefSeq annotation (RefFlat.txt) from UCSC, a list of
nonredundant RefSeq accession numbers derived from
UniGene, assembled chromosomes from UCSC and a list
of all conserved regions found in each chromosome. For
example, a user could choose to obtain only conserved
sequence that has been RepeatMasked and is within 1000
bp upstream of the transcriptional start site. SequenceEx-
tractor creates a graphical output file in which these vari-
ous sequences regions are displayed [see Additional
Figure 4 for a sample output file]. SequenceExtractor also
generates a number of support files (described below)
necessary for the different motif finders. A background
file, used to calculate a Markov background model of an
order defined by the user (usually fifth order), is generated
from all of the nonredundant RefSeq accession number in
UniGene. A sequence file in which non-conserved regions
and masked regions are indicated by "N"s, is also gener-
ated using all nonredundant RefSeq accession numbers in
Unigene; this file maintains the relative spacing of the
sequence relative to the transcriptional start site, and thus
can be readily used both for calculating group specificity
scores and positional bias scores using the method
described by Hughes et al. [21]. Note that MultiFinder can
be run independently of SequenceExtractor and UCSC
annotation.

Included as part of SequenceExtractor is an option to cre-
ate a user-specified number of randomly selected input
sequence sets, matched in size and position to the given
input sequence set of interest (which we refer to as
"matched randoms"). For example, a user inputting 20
genes whose 1 kb upstream sequence is to be searched for
motifs, can specify that an additional five sets of 20 ran-
domly selected genes also be searched for motifs within
the 1 kb of upstream sequence. The use of such matched
random sets has been described before [21], and is impor-
tant for assessing the statistical significance of any motifs
discovered within the input set of interest. For random
sequence matching, SequenceExtractor first selects a ran-
dom sequence of the same type as the query test set (e.g,
1000 bp upstream, RepeatMasked, conserved) that is the
same size as or larger than the corresponding sequence
from the query test set, and then within that region selects
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a randomly positioned subsequence that is exactly the
same length as the sequence from the input set. This iter-
ative process builds random sequence sets that contain
the same number of sequences of the same lengths as the
query test set. Attempts to generate random sequence sets
containing conserved sequences that were in the exactly
same position relative to transcriptional start site failed in
situations where no suitable sequence existed or became
exceedingly time-consuming when only a few sequences
in the genome were suitable. The random sequence
matcher will use a given RefSeq accession number no
more than once in each matched set of randomly selected
sequences. SequenceExtractor was also designed to gener-
ate randoms from a user-supplied input sequence set
where the region that the sequence set came from is
known but the exact positions of the sequences relative to
transcriptional start site might not be known.

Word frequency analysis
Word frequencies for the upstream, intronic and down-
stream regions of all nonredundant representative Uni-
Gene entries with RefSeq accession numbers were
generated using the hg16 assembly of the human genome
[29,30,58] and build #173 of UniGene [59]. The file con-
taining the nonredundant representative members of each
UniGene cluster (Hs.seq.uniq.Z) was scanned for RefSeq
accession numbers. The sequences of interest for the Ref-
Seq accession numbers were generated from the hg16
assembly of the human genome. Annotation listing con-
served regions between the human genome (hg16) and
the mouse genome (mm4), transcriptional Start/Stop
sites, intron/exon boundaries and assembled chromo-
somal sequence for the human genome was obtained
from the UCSC Genome Bioinformatics site [29,30]. The
word frequency calculations were limited to the Repeat-
Masked human sequence that was conserved with mouse.
Repeats in these sequences were masked using the "-s" set-
ting of RepeatMasker [60]. For the upstream, intronic and
downstream regions five different sequence windows
were considered: 0–1000 bp, 0–2000 bp, 0–5000 bp,
1000–2000 bp and 2000–5000 bp. For comparison the
word frequencies for all noncoding sequence in the
human genome were generated. The ratio of the word fre-
quency in each sequence window versus the word fre-
quency from all noncoding sequence was calculated.

MultiFinder.pl
MultiFinder is a Perl package that performs motif searches
using up to four different profile-based motif finders, and
is freely available to academic and non-profit users. The
motif finders included in MultiFinder are AlignACE, MDs-
can, BioProspector and MEME. Our goal in incorporating
motif finders into MultiFinder was to get a set of dissimi-
lar search algorithms that would maximize the number of
different motif finding algorithms used. The motif finders

also had to output a motif profile that could be used to
generate PWMs. Finally, the motif finders had to be read-
ily available so that others would be able to download
and use them locally. AlignACE [21,22] is a Gibbs sam-
pling algorithm that uses GC content to model the back-
ground. BioProspector [24] is also a Gibbs sampling
algorithm, but incorporates a third-order Markov model
to approximate the background. MDscan [23] is a word
enumeration algorithm that also uses a third-order
Markov model of the background. Both MDscan and Bio-
Prospector incorporate a threshold sampler during the
motif finding process that screens potential words against
the evolving motif to speed up the motif finding proce-
dure. MEME [4] is an expectation maximization algo-
rithm and uses a Markov background model of an order
chosen by the user. These motif finders all use a FASTA-
formatted input file but have different support file
requirements. BioProspector and MDscan both require a
FASTA-formatted background file that is internally con-
verted into a third order Markov model. MEME requires a
pre-generated Markov model of background. SequenceEx-
tractor automatically generates these sequence and sup-
port files. These files are then submitted to MultiFinder,
which performs a motif search at each motif width with
all of the motif finders selected by the user. The user may
select a range of motif widths between 4 and 25 bp; these
motif width limits are imposed by MDscan. We note that
MDscan was designed to be used on ChIP-chip data or
other sets of data for which each sequence has been
assigned a score that can be used as a measure of how
important it is likely to be in subsequent motif searches;
however, we did not use this feature of MDscan in submit-
ting the skeletal muscle CRM sequences.

These motif finders use different target scoring functions
for motif finding. AlignACE, BioProspector and MDscan
use alternate approximations of the maximum a posteri-
ori (MAP) score of Liu et al. [61]. MEME calculates a p-
value for each motif. Since the different target scoring
function used by each motif finder prevent direct compar-
ison of the scores generated by the motif finders, four
other motif scoring functions were incorporated into Mul-
tiFinder, in order to allow users to pick which score(s)
they wish to calculate and which one they wish to use for
ranking the motifs identified from a search of the user-
supplied gene list. Since our goal was to identify tissue-
specific motifs, we chose to report the group specificity
and site specificity scores, and to rank the motifs accord-
ing to group specificity.

In this study, we chose to search a motif width range of 6–
18 bp for all MultiFinder runs, allowing up to 30 motifs to
be identified by each of the four motif finders. We ran
each motif finder with its own default parameters. For
AlignACE, the GC content for background was set based
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on the calculated percentage of GC from the given back-
ground file, the expect score was set to the width of the
motif, the oversample was set to 5, and the minpass was
set to 200. For BioProspector, the number of refinements
was set to 40, the maximum gap width was set to one-
third the width of the motif width, and the minimal block
size was set to one-third the motif width. For MDscan, the
number of motifs to refine was set to 50, the number of
sequences used in the initial refinement was set to 20, and
both strands were used in the motif search. For MEME,
both strands of DNA were searched, the motif could occur
zero times or many times in each sequence, the minimal
number of words per motif was set to 10, and a fifth order
Markov background was generated from the sequence
background file. MEME was the only motif finder of the
four that incorporated a user-defined Markov background
model.

Each of these motif finders uses a different internal repre-
sentation of gaps within motifs. AlignACE internally rep-
resent motifs as a collection of active and inactive
positions. The inactive positions in motifs are not opti-
mized during the Gibbs sampling phase of the motif
search and tend to have little or no sequence preference.
BioProspector allows an explicitly defined gap ranging
between a minimum and maximum width defined by the
user. During the sampling phase positions within the gap
are not used to optimize the motif target function. The
regions of the motif flanking the gap are used to optimize
the motif. MDscan and MEME do not have a user-defined
gap width parameter.

MultiFinder merges the motifs found by each motif finder
across different motif widths. The merged motifs from
each motif finder are then merged across all of the differ-
ent motif finders. Merging motifs is done for each scoring
function of interest. Motifs are merged by first using Com-
pareACE [21] to calculate the Pearson correlation coeffi-
cients between each pair of motif PWMs, and then
performing hierarchical clustering of the motifs with Tree
[21]. In merging, only the best scoring member of each
motif cluster is retained, thus eliminating the poorer scor-
ing redundant motifs. After the motifs are merged, motif
rank order is determined for the five motif scoring func-
tions. The merged motif lists are output in text and graph-
ical format for each motif finder and for each scoring
function of interest, both before and after combining and
merging across the different motif finders.

Motifs that were either palindromic or that contained tan-
dem repeats were identified as blocks of sequence con-
taining three or more contiguous nucleotide positions of
at least 0.5 bits of information at each position, that were
either tandem or inverted repeats of each other. Specifi-
cally, a correlation coefficient was calculated for all possi-

ble pairs of blocks, in both orientations, within each
motif. Tandem repeats were defined as two blocks with a
Pearson correlation coefficient of at least 0.7 with the
same relative orientation. Palindromic motifs were
defined by their containing two blocks with a Pearson cor-
relation coefficient of at least 0.7, in an inverted orienta-
tion.

BlockFilter.pl
We defined a "block" as three or more consecutive bases
of at least 0.5 bits of information [37] at each position,
and then identified such blocks within a motif in order to
classify a motif as either ungapped or gapped. An
ungapped motif was defined as a motif with a single block
of four or more consecutive bases, and a gapped motif was
defined as a motif containing two or more blocks that
were each three or more consecutive bases long. BlockFil-
ter.pl is a Perl script, available as part of MultiFinder, that
removes motifs that do not fall into either of these classes.
We applied block filtering only to the mammalian motif
searches.

Motif scoring
The four motif finders use different scoring functions in
identifying motifs. These functions are not readily compa-
rable to one another and thus cannot be used to rank the
results between different motif finders. Therefore, a
number of other scores that are comparable across the
motif finders are automatically generated by MultiFinder.
The locations of sites that match motifs are found with
ScanACE [21], which searches a user-supplied sequence
set for occurrences of a motif using a mononucleotide
PWM representation [62] of the motif. All matches scor-
ing better than a user-specified threshold are returned.
MultiFinder calculates the group specificity score [21,63]
for each motif using the hypergeometric distribution:

where S is the number of genes that contain words that are
part of the motif, H is the number of target genes used by
the motif finders to find the motif, x is the intersection
between S and H, and N is total number of genes in the
background sequence set of genes. The related site specif-
icity score [64] is also calculated using the hypergeometric
distribution. Unlike the group specificity score, the site
specificity score accounts for more than one occurrence of
a given motif in the input sequence windows for the input
genes. This score may potentially be more useful than the
group specificity score for motif finding in higher eukary-
otic genomes, in which longer intergenic sequences fre-
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quently contain multiple occurrences of TFBSs. Moreover,
the group specificity score becomes a poor tool for statis-
tical comparison when most of the sequences in both the
foreground and background sequence sets have an occur-
rence of the motif.

A ratio of the frequency of the motif in the test set versus
the frequency of the motif in the background is also calcu-
lated:

The bit score of each motif [37] quantifies the amount of
information contained in a motif using the cumulative
total of information at each position of the motif:

I(l) = 2 - (U(l) + e(n))

where U(l) is the uncertainty at each position and e(n) is
a correction factor that is important when there are few
(n) sample sequences.

Bit scores tend to score long, low complexity motifs such
as AT-rich regions that have not been fully masked by
RepeatMasker, as being very significant. Therefore, the bit
score may be less useful for assessing the regulatory rele-
vance of a motif.

Finally, a user can also opt to report the maximum a pos-
teriori (MAP) score, as calculated by AlignACE [21,22], for
motifs found by that motif finder.

S. cerevisiae ChIP-chip data
Sequence sets used as validation data sets for motif find-
ing were obtained from the S. cerevisiae ChIP-chip data
from Lee etal. [11]. We used a p-value threshold of 0.001
in selecting yeast intergenic regions bound by each of
these 10 TFs. This stringent cutoff was the same value used
by Lee et al. [11] to reduce false positives. Sets of probes
that were within the p-value threshold for the 10 selected
TFs were sorted into groups. The probes in each group
were mapped to unique ORFs, and duplicate ORFs were
removed. ORF Sequences were obtained using the anno-
tation and chromosomal sequence from the Saccharomy-
ces Genome Database [65,66]. Sequence 1000 bp
upstream of translational start was extracted for each ORF.
Upstream regions were truncated where there was overlap
with the coding regions of neighboring ORFs.

In order to determine the statistical significance of the
motifs found by MultiFinder, 10 size-matched randomly
selected sequence sets were generated for each of these 10
yeast TFs and submitted to MultiFinder. For example, the
set of input sequences for Reb1 contained 80 upstream

regions ranging in size from 108 to 1000 bp. Each random
set for Reb1 also contained 80 upstream regions and each
one of these regions was the same length as its counterpart
in the Reb1 test set. Thus, each random sequence set con-
tained the same number of sequences with same total
number of base pairs and each sequence within the ran-
dom set was size-matched to one of the sequences in the
Reb1 motif finding sequence set. The geometric mean and
range of the group specificity scores of all the motifs found
in all the corresponding size-matched random sequence
sets were calculated. Similarity between the previously
identified motif and the motif identified by MultiFinder
was calculated with CompareACE [21], which uses only
the six most informative positions of the first PWM in cal-
culating the Pearson correlation coefficient between two
PWMs. A Pearson correlation coefficient of at least 0.7 was
used to assign a motif found with MultiFinder to a given
TRANSFAC identifier. In cases where a MultiFinder motif
matched more than one TRANSFAC motif, the TRANS-
FAC motif with the highest correlation coefficient with the
MultiFinder motif was used to assign the TRANSFAC iden-
tifier.

Clustering of human and mouse tissue-specific 
oligonucleotide array expression data
Probes for orthologous human and mouse genes that dis-
played similar expression patterns in the GNF SymAtlas
[32] were determined by calculating the Pearson correla-
tion coefficient between the expression profiles across the
34 tissue types that were profiled for both human and
mouse. The data set contained 1,681 probe pairs with
expression correlation coefficients of at least 0.6. The
expression data from the 1,681 human genes were then
processed with Cluster 3.0 [67,68]. The data were log-
transformed, and then five rounds of median-centering
and normalization were performed on both probes and
tissues. The normalized expression data were then clus-
tered hierarchically using centroid linkage and the cen-
tered correlation similarity metric both by probe and by
tissue type. The clustering step generated 18 expression
clusters of probes with cluster correlation coefficients of at
least 0.6 (see Figure 5). Listed in Additional Data File 1 are
lists of the nonredundant RefSeq accession IDs to which
we could map the Affymetrix probe IDs for each of these
18 expression clusters, as well as for the skeletal muscle
expression cluster resulting from clustering all the human
expression data regardless of the expression of the orthol-
ogous mouse genes. The lists of RefSeq accession numbers
were submitted to SequenceExtractor.pl, which resulted in
an average of 204 bp input sequence per gene with a range
of ~20–1000 bp over all of the gene expression clusters,
and then these sequences were submitted to Multi-
Finder.pl.
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Extraction of and Determination of Matches to 
TRANSFAC Motifs
Known TFBS motifs were downloaded from TRANSFAC
Professional 7.4 (BIOBASE Biological Databases, Ger-
many), and used for the identification of known motifs
among the motifs discovered by MultiFinder. Multiple
TFBS matrices were present in TRANSFAC for many of the
TFs. Because TRANSFAC appends matrix names with a
numerical code that indicates their assessment of the
quality of the binding site data, for those TFs for which
there were multiple TRANSFAC motifs available, we were
able to extracted for each TF its highest quality matrix.
Briefly, higher quality motifs are indicated with lower
numbers; for example, a matrix denoted "Q1" is of the
highest quality category and was generated from experi-
mentally verified binding sites using a standard method
for finding binding sites, while a matrix denoted "Q6"
motif indicates "no quality assigned", which we conserva-
tively set to be the lowest quality category [69]. In
instances where a consensus motif was present for a TF but
no matrix with a quality code existed, the consensus motif
was used. Only motifs with a "V" designator in the name,
indicating that they were generated from vertebrate TFBSs,
were selected.

Of the 695 total motifs in TRANSFAC Professional 7.4, we
extracted 368 nonredundant vertebrate motifs, including
consensus motifs, based on their TRANSFAC quality
codes. We used CompareACE [21] to determine if any
motifs discovered by MultiFinder matched any of the 368
known TFBS motifs. To permit these motif comparisons,
we converted all of the TRANSFAC motifs from position
frequency matrices into AlignACE-formatted motif files
by generating sets of sequences that closely approximated
the original TRANSFAC position frequency matrices. The
best match with a correlation coefficient of at least 0.6 was
used to name the discovered motif. We used the more per-
missive 0.6 correlation coefficient threshold for the motifs
found in these gene expression clusters as compared to the
more stringent 0.7 correlation coefficient threshold for
the motifs found in the yeast ChIP-chip data sets, since we
expected that the mammalian gene expression data sets
would tend to be less highly enriched for a given TFBS
motif than the yeast ChIP-chip data sets. Some motifs
found by the motif finders had multiple matches better
than a 0.6 correlation coefficient; in such a case, the
graphical view (.svg file) of the motifs retains the name of
only that known motif with the best correlation, while the
text output (.stat file) retains the names of all known
motifs with a correlation coefficient of at least 0.6. A list-
ing of the TRANSFAC motif names that were used to gen-
erate each of the AlignACE-formatted motifs is provided
in Additional Data File 2.

Our hypothesis was that sequence orthologs with highly
correlated expression between human and mouse were
likely to be functional orthologs. Thus, in order to identify
the TFs in the GNF expression data that were functional
orthologs, we selected those probes that showed highly
correlated (0.6 correlation coefficient) gene expression
between human and mouse. The human GNF probes for
genes for which mouse ortholog probes were known
(11,186 human probes) were submitted to the Affymetrix
NetAffx website in order to identify the probes for genes
with known TF activity. The TRANSFAC Professional 8.0
database was then queried for matrices that correspond to
the DNA binding site motifs for genes with known TF
activity in the GNF expression data. This resulted in 29
TFBS matrices, 27 of which were present in the list of
motifs extracted from TRANSFAC Professional 7.4 and
thus were considered in motif comparisons.

Implementation
MultiFinder is a command line program written in Perl
using the ActiveState 5.8.0 distribution. The XML::Writer
and IO::File modules were used in addition to the stand-
ard Perl modules. MultiFinder consists of six source mod-
ules and two scripts. The two scripts are
SequenceExtractor.pl and MultiFinder.pl. These scripts
extract sequence and find motifs respectively. On an Ath-
lon MP 2000+ CPU running at 1.6 GHz with 2 Gb RAM,
SequenceExtractor takes nearly 5 minutes to extract the
conserved regions and background files and to generate a
fifth-order Markov model for the 1000 bp upstream
regions of 30 genes belonging to the test set and 8000
genes belonging to the background. MultiFinder takes
23:57 hours to perform a search of 36 sequences with
6870 total base pairs of sequence using all four motif find-
ers at all widths between 6 and 18 bp.

List of abbreviations used
TF, transcription factor; BS, binding site; TFBS, transcrip-
tion factor binding site; ChIP, chromatin immunoprecip-
itation; PWM, position weight matrix.
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Additional file 1
The following additional files are available with the online version of this 
paper, and also on the Bulyk lab website http://the_brain.bwh.har 
vard.edu: a PDF file that shows the performance of MultiFinder with yeast 
ChIP-chip input set (Additional Figure 1); a PDF file that provides exam-
ples of motifs found by MultiFinder that failed the block filtering criteria 
(Additional Figure 2); a PDF file that provides heat maps of each of the 
18 selected gene expression clusters that were examined with MultiFinder 
(Additional Figure 3); a PDF file that provides sample output from 
SequenceExtractor (Additional Figure 4); a text file in which we provide 
lists of the nonredundant RefSeq accession IDs to which we could map the 
Affymetrix probe IDs for each of these 18 expression clusters (Additional 
Data File 1); a text file in which we list the TRANSFAC TFBS matrix 
accession number and abbreviated motif name for each of 368 nonredun-
dant vertebrate TFBS motifs (Additional Data File 2); a text file in which 
we describe the *.ace motif output files, *.svg graphical output files, and 
*.stat statistical files, available at http://the_brain.bwh.harvard.edu/
GBMF, for all known and novel motifs discovered by MultiFinder within 
the examined tissue-specific expression clusters, that passed our block fil-
tering criteria and that had group specificity scores that were more signif-
icant than the geometric mean of the matched randoms, along with the 
geometric means and standard deviations of the group specificity scores for 
motifs resulting from the five sets size-matched randoms for each expres-
sion cluster (Additional Data File 3); a PDF file in which we provide 
tables supporting our word frequency analysis for each of nine different 
classes of genomic sequence windows from the human genome (Addi-
tional Table 1). In addition, on the Bulyk lab website http://
the_brain.bwh.harvard.edu, we provide via an academic license the Mul-
tiFinder, SequenceExtractor, and BlockFilter software and sample input 
and output files, and a PDF file in which we provide instructions for the 
installation and usage of the MultiFinder, SequenceExtractor and Block-
Filter programs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-229-S1.pdf]
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